Skip to content

Causal effects of place, people, and process on rooftop solar adoption through Bayesian inference

Min, Y., & Ko, I. (2023). Causal effects of place, people, and process on rooftop solar adoption through Bayesian inference. Energy (Oxford), 285, 129510-. https://doi.org/10.1016/j.energy.2023.129510.

View Publication

Abstract

While previous studies have established correlations between rooftop solar adoption and various factors, a comprehensive understanding of the underlying causal mechanisms has been limited by the intricate interrelationships among these variables. To address this gap, we propose a Bayesian causal inference approach that examines the interplay of various factors influencing rooftop solar adoption across multiple cities. By employing post-phenomenology, we uncover latent variables encompassing place, people, and process, shedding light on how they shape public responses to emerging energy technologies. We analyze the causal effects of these factors and highlight the significance of housing and built environment attributes in determining energy expenditure and rooftop solar adoption, emphasizing the need for policies that target energy equity. Additionally, we reveal the influence of neighborhood spillovers on adoption, indicating the role of social norms and information diffusion. The observed city-level variability underscores the importance of local contexts and location-specific factors in the adoption process. Furthermore, we highlight the need to consider causal relationships and the indirect effects of people-related attributes mediated through place-related attributes. Overall, these findings contribute to a deeper understanding of the factors shaping rooftop solar adoption via causal modeling and underscore the importance of tailored policies to promote adoption.

Keywords

Spillover effects; Energy equity; Post-phenomenology; Ignorability; Factor analysis; Clean energy; Photovoltaic systems; Overcoming barriers; Technology adoption; Decision-making; Energy justice; United-States; Vulnerability; Diffusion; Deployment; Responses